
www.manaraa.com

Softw Syst Model (2012) 11:11–28
DOI 10.1007/s10270-010-0163-y

THEME SECTION

Supporting the internet-based evaluation of research software
with cloud infrastructure

Pieter Van Gorp · Paul Grefen

Received: 28 October 2009 / Revised: 29 March 2010 / Accepted: 12 May 2010 / Published online: 30 May 2010
© The Author(s) 2010. This article is published with open access at Springerlink.com

Abstract Due to license restrictions and installation issues,
it is often not feasible to experiment with software with-
out making substantial investments. Especially in the case
of legacy tools, it turns out that even free software is often
too costly (i.e., time-consuming) to be installed for evaluat-
ing the quality of a research contribution. After organizing a
series of events related to software modeling, we have con-
structed (and started to use) SHARE, a system for sharing
practically any type of software artifact to reviewers and to
other participants who have very limited time available. The
system relies on cloud-computing technologies to provide
online access to interactive environments containing all the
tools, documentation, input and output models to reproduce
alleged research results. The system also enables one to clone
such an environment and add additional models or tools in
order to extend a contribution or pinpoint a problem. In retro-
spect, we observe that the approach is not limited to software
modeling and SHARE is in fact gaining acceptance in other
fields already.

Keywords Reproducible research · Model transformation ·
Tool contest · Peer review · Cloud computing

Communicated by Tony Clark and Jorn Bettin.

P. Van Gorp (B) · P. Grefen
School of Industrial Engineering,
Eindhoven University of Technology,
Eindhoven, The Netherlands
e-mail: p.m.e.v.gorp@tue.nl

P. Grefen
e-mail: p.w.p.j.grefen@tue.nl

1 Evaluating software related research: a call to arms

The amount of research contributions that rely on software is
increasing. Especially when the contribution itself consists
of an algorithm or information system, the results should at
least be available for peer review and ideally even for repro-
duction by the complete research community. Section 1.1
describes how reproducibility problems in the graph trans-
formation community have triggered our work on SHARE.
Section 1.2 outlines the different levels of reproducibility that
can be observed in practice, independently of that research
domain. The subsequent sections introduce our key solution
to the underlying problems. More specifically, they describe
why we are applying cloud-computing technologies, how we
are integrating them, and how others can use our supportive
information system—SHARE (Sharing Hosted Autonomous
Research Environments [49]).

1.1 Background: graph transformation tools contest

The graph transformation community organizes a yearly con-
test to compare the expressiveness, the usability and the per-
formance of graph transformation tools along with a number
of selected case studies. Similar to other academic initia-
tives, the contest leads to peer-reviewed publications. These
publications facilitate the comparison of transformation lan-
guages, since different languages are applied for tackling
exactly the same case studies. A scientific publication is often
however not the optimal medium to describe pragmatic tool-
related features. Moreover, readers (including reviewers)
cannot verify (without unrealistic effort) whether all aspects
of the transformation definition are documented fairly in the
article.

In a special issue on experimental software engineering,
van den Brand observes that “the pressure to publish is much

123

www.manaraa.com

12 P. Van Gorp, P. Grefen

higher than the pressure to develop good software” [45]. This
confirms that also outside the graph transformation commu-
nity, the limitations and risks of the mainstream scientific
reviewing process are evident. Coming back to the transfor-
mation tool contest, these risks were exposed most in the
first edition of the event [39]. In fact, the way in which a
solution was made available was not formally regulated yet.
Most participants however did provide a hyperlink to the
download site of the proposed tool, along with a compressed
archive containing the solution to the case study. At the time
of writing this article (2 years after the first contest), the dis-
advantages of this approach are clear: it is already impossible
to reproduce the submissions to a particular case study [55]
within one man-week. Consequently, only very few experts
are aware of the fact that some accepted articles to the first
tool contest are based on solutions that have disadvantages
and limitations that slipped the peer-reviewing process.

For the second edition of the contest, the organizers aimed
to anticipate reproducibility problems by giving participants
access to virtual machines (VMs [17]) running on a local
server during the workshop. It turned out that without special-
ized management software, this leads to hardware resource
problems and software license problems. Additionally, it
turned out that too much effort was required from the organiz-
ers as well as from participants when applying this approach
over the Internet, for example when editing a journal [52].

This article describes SHARE [49], a system that has
been constructed for solving such organizational problems.
We will demonstrate how it has been used successfully for
the third edition of the contest (and other events). More-
over, we call the organizers of other software-related publica-
tion targets (workshops, conferences and journals) to action:
we have experienced that with marginal extra effort from
organizers, authors and reviewers, SHARE can drastically
improve the outcome of the peer-reviewing process. There-
fore, we advocate that this way of working should be adopted
globally, as soon as possible.

1.2 Demonstrating software: levels of accessibility

Before discussing the proposed cloud-based solution to
software demonstration in the upcoming section, we should
clarify what makes the evaluation of research software so
expensive today. Therefore, Table 1 briefly classifies the com-
mon ways in which the software related to research articles
is currently made available. Each approach can be ranked
according to the level of accessibility of the proposed con-
tribution (a tool and the related documentation, inputs and
expected outputs, analysis results, etc.) Obviously, the effort
for the author who wishes to demonstrate his contribution
also needs to be taken into account.

At level 1, a research article is not accompanied by the
artifacts for reproducing the discussed results. To researchers

Table 1 Levels of accessibility for software related contributions

1 Not accessible

2 Accessible after request

3 Available Online, Manual installation

4 Available Online, Manual configuration

5 Available Online, Fully configured

in other disciplines of experimental science, it may come as
a surprise to hear that in software engineering it is very com-
mon to publish articles whose results cannot be reproduced.
Van den Brand confirms that, “in physics or chemistry papers
about experiments contain a lot of technical details in order to
facilitate other researchers to replay the experiments in order
to validate the results described in these papers”, and advo-
cates that in software engineering, more attention should be
paid to reviewing the software artifacts that support research
contributions [45].

At level 2, readers are invited to contact the authors for
getting access to the artifacts supporting a research article.
Among other disadvantages, this prevents an anonymous
peer-reviewing process.

From level 3 and up, the research artifacts are publicly
available. Van den Brand indicates that “more and more com-
puter scientists use the open source community to distribute
their tools. In this way it is not necessary to reimplement
tools, only to download and install them.” [45]. However, one
cannot expect that all software-related publications strictly
rely on open source licenses. It should be possible to demon-
strate closed source contributions too, for a limited amount of
time, in an environment that can be trusted by license holders.
In fact, often articles are published before the underlying soft-
ware is ready for distribution under any license (see [6] for
an example from the model transformation domain). SHARE
should easily enable reviewers to verify the results from such
articles, without requiring so much effort from authors that
they decide to publish elsewhere.

Apart from these license issues, one should note that con-
tributions at accessibility level 3 are often not investigated by
readers when they involve more than one sign-up, more than
one download and/or a fragmented installation procedure.
In the graph transformation domain, GReAT [1] for exam-
ple requires users to register for and install different parts
of a tool chain manually. Even tools based on the Eclipse
integration platform often require readers to install plugins
from various sources (see [8] for an example from the model
transformation domain). In this context, uncontrolled updates
from third-party components often lead to inconsistencies
some years after the related article was published (see [21]
for an example from the graph-based software engineering
domain).

123

www.manaraa.com

Supporting the internet-based evaluation of research software 13

At level 4, the installation of a modeling and transforma-
tion environment is fully automatic (or the tool runs from a
browser, as presented in [14]). A final burden for reproducing
case study results remains when the input or expected output
files are missing (these artifacts can be at level 1 or 2).

At level 5, all tools and all case study specific artifacts (a
small manual, a set of inputs, outputs, …) are available in an
environment that is dedicated to the research article. SHARE
is a platform for setting up such environments and sharing
them in a controlled manner. Notice that legacy libraries and
prototypical software can be installed in such an environment
easily and permanently too, which is of special interest when
the supporting researcher has no time to make the software
available at level 4.

The remainder of this article is structured as follows: the
following section illustrates how SHARE enables a more reli-
able peer-reviewing process. It aims to activate the research
community towards higher levels of availability for evaluat-
ing research software. Section 2 describes the requirements
for that system and the models that have lead to its imple-
mentation. Section 3 presents simple walk-throughs to enable
interested readers to instantly adopt the proposed approach
too. Section 4 then presents more detailed models of SHARE:
a conceptual data model clarifies the underlying data struc-
ture whereas a simulation model provides a basis for
statistically determining how much time one can save by
adopting the proposed approach. Section 4.3 presents our les-
sons learned from using and maintaining the SHARE infra-
structure. Finally, Sect. 5 discusses related work and the final
section presents our conclusions.

2 An academic cloud for evaluating research software

“Cloud computing” is an emerging paradigm for the provi-
sion of computing infrastructure [54]. Buyya et al. point to
various industrial sources to motivate the economical impact
of the paradigm and derive the following running defini-
tion: “A Cloud is a type of parallel and distributed system
consisting of a collection of inter-connected and virtualised
computers that are dynamically provisioned and presented as
one or more unified computing resources based on service-
level agreements established through negotiation between
the service provider and consumers.” [10]. SHARE is a
public cloud (cost aspect) that enables academic research-
ers (providers and consumers) to demonstrate and evalu-
ate research software (the service). At the time of writing,
SHARE provides 70 users dynamic access to more than 501

virtual machine images (unified computing resources), which
are currently deployed across three university networks

1 This number excludes research demos created by an author of this
article.

(distributed system). Existing images can be cloned, mod-
ified and published, in order to add new research software to
the cloud. A demonstrator can limit the time that an image
can be instantiated as a virtual machine (the service-level
agreement).

In a nutshell, SHARE is an online workflow system to:

– request access to a group of virtual machine images,
– start a virtual machine for evaluation purposes,
– create a virtual machine image containing your research

software and related documentation and publish it to a
group.

Additionally, SHARE enables organizers to create new
groups, manage user registrations and perform other admin-
istrative tasks. Finally, server administrators can monitor the
usage of servers and replicate (or migrate) images across
servers. This section describes the requirements and an archi-
tectural model that have lead to the implementation of this
system.

2.1 Requirements models

Figure 1 displays a use case diagram that models the main
functional requirements of the system. Use cases related to
virtual machines are shown on the left of the diagram, use
cases related to groups (i.e., image access rights) are shown in
the middle, and use cases related to computational resources
are shown on the right.

Quite intentionally, users who wish to access a research
demonstration are modeled in the very center of that diagram:
the Evaluator actor and the associated “Evaluate Demo” use
case indicate that the system’s core requirement is to facili-
tate the evaluation of demonstrations. Remark that the Eval-
uator actor is also connected to the “Register for Group”
use case. This models the requirement that demonstrations
should only be accessible to users who are members of a
particular group. As indicated by the association to actor
Organizer, the corresponding sign-up requests need to be
approved by a privileged user. In practice, this user is often
the organizer of a workshop or a conference. The actor Orga-
nizer is also connected to the use case Advertise: the system
should make it easy for organizers to include a list of demon-
strations in printed proceedings and/or on a website. Notice
that the number of organizers should grow linearly with the
number of groups to avoid organizational bottlenecks.

The use case “Manage Hardware Load” relates to the
actor “Host Admin” only. This conforms with the defini-
tion of cloud computing as “the user-friendly version of
grid computing”, in which case grid computing is defined
as “reduce computing costs and increase flexibility and reli-
ability by using third-party operated hardware” [54]. Con-
cretely, the “Manage Hardware Load” use case refers to the

123

www.manaraa.com

14 P. Van Gorp, P. Grefen

Fig. 1 Use case diagram

browser-based inspection of server usage and the browser-
based migration and/or replication of images. As soon as an
image is replicated, the system should take care of load bal-
ancing automatically. Neither evaluators, nor demonstrators
should care about the physical location of virtual machine
images or the capacity of particular hardware.

Note once more that the demonstration of licensed soft-
ware should be supported too. This has an impact on the use
cases “Request Mutable Clone” (since it should be possible
to indicate the maximal allowed session time), “Use Remote
Machine” (since some sessions need to be terminated auto-
matically), and “Manage Internet Access” (since the system
should prevent that licensed artifacts leave the cloud).

The use case “Work Offline” refers to the optional support
for creating virtual machine images locally (i.e., on the phys-
ical machine of a demonstrator). At the time of writing, only
three out of all images have been created locally. Therefore,
we acknowledge that this is a separate use case, but do not
attach high priority to automating the related workflow.

In contrast, the use case “Request Mutable Clone” repre-
sents a feature that is of uttermost importance in practice. It
involves the ability to request a clone of an existing virtual
machine image in order to:

– create a new version of the original contribution,
– pinpoint a limitation of an allegedly complete solution,

or
– create a completely new demo that happens to rely on

some software that happens to be installed in the source
image already.

Notice that each demonstrator should be able to protect the
artifacts that he uploads to a virtual machine image. In some
cases, he may object to the publication of variants on his
submitted contribution. Therefore, before cloning an image,
the owner of that image is asked for approval explicitly.
Notice that after cloning, the image may be enriched with
artifacts for which the new demonstrator owns the rights.
Therefore, he should later be contacted for approving (or
denying) requests to clone the enriched clone. In order to
keep this approval process transparent, we decided to keep

it simple. More specifically, we assume that each approval
of a clone request also involves a transfer of ownership (and
responsibility) of the cloned content. Consequently, when
someone else later requests for a clone of the cloned image,
the original image owner is not asked for approval anymore.
So far, this restriction has not been an issue yet, but it may
become an issue when using the system to control the sharing
of licensed content on a global scale.

According to these requirements, even licensed software
can already be shared safely (1) because the software license
is securely contained in an internet connectionless virtual
machine and (2) because no new images can be cloned from
existing ones unless the image owner approves. However,
license holders should be aware that they fully transfer the
approval rights to another user as soon as they approve a
clone request. The organizer should preserve his veto right
though. In that setting, owners of images with licensed con-
tent should only approve a clone request if they have a good
trust relationship with this organizer. In our ongoing work,
we are investigating how this trust relationship can be sup-
ported by electronic contracts that are based on a new license
type [4].

Besides these functional requirements, the system was
implemented with the following non-functional requirements
(NFRs [31]) in mind:

NFR1: Stress-Testable Environments The system should
enable the collection of performance metrics from a set
of software solutions. This can either be supported by
enabling group organizers to download all images for
local stress-testing. Alternatively, the system can ensure
that at the time of stress-testing an image, the underlying
machine can be selected. That physical machine should
then not be serving any other session.

NFR2: WAN-Deployable As an academic research cloud,
SHARE can rely on academic infrastructure, that is
largely underused in most cases [13]. By asking such
a small investment from new organizers over time, the
system can scale up organically. From an implementa-
tion perspective, this approach does result in a system
that runs across different university networks. This has

123

www.manaraa.com

Supporting the internet-based evaluation of research software 15

Fig. 2 Architectural model

an impact on security-related as well as performance-
related design decisions.

NFR3: Easily Installable SHARE is used by computer sci-
ence researchers who are not trained as system admin-
istrators and who often cannot wait for the assistance of
one. Such researchers should be able to install the vir-
tual machine server software on a mainstream university
machine within one hour. Ideally, the installation does
not require root privileges.

NFR4: Secure As a specific concern, unknown university
system administrators have root privileges on the mach-
ines running the virtual machine server software. Con-
sequently, passwords should, for example, not be stored
on the system’s virtual machine servers. Additionally,
SHARE should communicate via robust communication
protocols, for which the university network administra-
tors are willing to open up the required firewall ports.

NFR5: Free Last but not least, SHARE can only rely on soft-
ware infrastructure that can be used free of charge for
academic purposes.

These NFRs are conflicting in various ways and balanced
trade-offs need to be made. For example, an easy to install
approach (satisfying NFR3) for realizing image replication
would be the use of certificates to grant two-way file synchro-
nization between all virtual machine servers. Unfortunately,
that is in conflict with the security requirement (NFR4.)

2.2 Architectural model

Figure 2 shows an enterprise architectural model of SHARE.
Following Winter and Fischer’s terminology [59], the dia-
gram aggregates elements from the infrastructure layer
(machine and network elements) and the software layer.
It focuses on the flow of information, the communication
protocols and the security measures. The numbers in Fig. 2

represent a typical scenario through the system: first (see ➀

on the figure), a user authenticates to the SHARE website.
The web server (labeled with ➁ in Fig. 2) uses information
from the database (labeled with ➂ on Fig. 2) to decide which
demos a particular user can start. The arrow with label ➃ rep-
resents an interaction between the user and the web server
to initiate a new virtual machine session. Label ➄ represents
the resulting activity on a virtual machine server that (1) con-
tains the selected image and that (2) has a sufficient amount of
processing and memory power available at the selected time
interval: the server boots a virtual machine with the selected
image and makes it remotely available to the user (label ➅).
Notice that Fig. 2 correctly visualizes that (1) not all virtual
machine servers contain all images and (2) on some virtual
machine servers, there may be no active users. Notice that the
latter property enables SHARE administrators to keep some
servers shut down outside peak hours (or days), in order to
save energy or perform maintenance tasks [28].

Section 2 defines SHARE as an academic cloud. There-
fore, Fig. 2 symbolically displays all SHARE servers on top
of a cloud-shaped graphic. Within that cloud shape, one can
identify two types of servers: a web server and a set of virtual
machine servers (the three blocks shown at the right). The
web server hosts all dynamic web pages for starting, cloning
and organizing virtual machines. Currently, the web server
also hosts the database and there is no need (yet) to move it
to a separate server.

The virtual machine servers are part of different university
networks. Therefore, they are protected by corporate fire-
walls. The web server communicates with these machines
via a secure protocol (SSH [5]). This ensures that when a
new session is initiated across the internet, no other internet
users can intercept information that could be used to login
to a virtual machine on behalf of the initiating user. As addi-
tional security measures, (1) the port for connecting remotely
to a virtual machine (see Fig. 2, between labels ➅ and ➆) is

123

www.manaraa.com

16 P. Van Gorp, P. Grefen

assigned randomly for each session, and (2) users need to
enter credentials at connection time (see Fig. 2, label ➆).
The underlying protocol (Remote Desktop Protocol, or RDP)
supports modern encryption methods [44].

From a platform perspective, SHARE relies on Apache
as a web container, MySQL as a database engine, and Vir-
tualBox as a hypervisor [17]. The web server and the virtual
machine servers run Linux natively. The website is imple-
mented in PHP [29]. The communication between web and
virtual machine servers is realized via Bash cron jobs [33].
On virtual machine servers, the hypervisor API is encap-
sulated by Bash wrapper scripts. Thanks to this indirection
layer, it is conceptually possible to switch to another hyper-
visor without affecting any code on the web server. However,
since VirtualBox currently satisfies almost2 all requirements
there is no plan to do so. Interestingly, VirtualBox can even
use virtual machine images from other hypervisor tools such
as VMware [56]. We are successfully using this feature for
hosting a legacy demonstration that has been created offline.

The following section provides descriptions of the work-
flows that have been deployed so far. Next, Sect. 4 presents
more models of the system.

3 Implementation: what?

This section walks the reader through some concrete SHARE
usage scenarios. Section 3.1 shows how to evaluate some-
one else’s demo whereas Sect. 3.2 shows how to create new
demos. Sections 3.3 and 3.4 describe administrative features.

3.1 Evaluator walk-through

Figure 3 shows an outline of the concrete screens that a typi-
cal evaluator will be confronted with when using the system
for the first time. Figure 3, ➀ shows the sign-up screen for a
particular group (GraBaTs09 in this case). The user can open
the dropdown menu to select from all other groups known
to SHARE at that point in time. In most cases, new users
will have entered this screen by following a hyperlink on a
workshop website and the dropdown menu will point to the
intended group already.

Figure 3, ➁ shows SHARE’s main screen. The user can
access the menu in the top to start new sessions, request
access to other groups, etc.3 The screen also lists all details
of sessions that are currently running for that user. Mind that
the concrete server address and port can vary for different

2 NFR3 is only partly satisfied since installing VirtualBox requires root
privileges.
3 The figure also shows the menu entries “Organize” and “Administer”,
which are available only to particular users.

sessions for the same machine image, since images can be
replicated across multiple servers.

Figure 3, ➂ shows the built-in Microsoft Windows client
for connecting to remote machines via the RDP protocol. As
shown in the figure, the user is supported to copy/paste all
relevant connection information from the SHARE website
(Fig. 3, ➁: username, password, server and port) to the cor-
responding fields of the RDP client. Notice that any operating
system comes with an RDP client nowadays. Nevertheless,
we have also considered the use of a Java applet that can be
started directly from the screen shown in Fig. 3, ➁.

Figure 3, ➃ shows a screen shot after connecting to
three remote virtual machines using the procedure described
above. The three concrete machines shown in the screenshot
relate to the 2008 edition of the graph-based tools workshop
(GraBaTs08). Without installing any graph transformation
tool locally and without fetching the specific inputs or exe-
cuting the proper startup commands, users can thus compare
the rather complex software environments.

Figure 3, ➄ displays the screen that is shown after click-
ing “Evaluate” and “Request New Session” on the screen
from Fig. 3, ➁. The figure shows two variability points: first
of all, users can choose between all images of the groups
they are currently registered to. Secondly, users can indicate
when the virtual machine should be running. By default, the
interface is configured to start a machine immediately and
keep it active for at least 4 h. In the case that all servers are
already executing their maximal amount of virtual machines,
a user may reserve a time slot in the future. Also notice
that virtual machine images containing licensed software
can be assigned a maximal execution time by their owner.
By default, virtual machines will only be terminated when
(1) the evaluator terminates his session explicitly, or (2) the
agreed time has expired and a server slot needs to be freed. In
contrast, when an image has been assigned a maximal execu-
tion time, all its virtual machines will be terminated directly
after expiry of that time frame.

3.2 Demonstrator walk-through

By default, the state of a virtual machine is not persistent
across sessions: for the evaluator walk-through discussed in
the previous session, it would be quite undesirable that any
changes to the virtual machines (as shown in Fig. 3, ➃) would
be persisted. All evaluators want to start from the image that
was prepared by a demonstrator. Evaluators can safely inves-
tigate the effect of drastic changes to that environment since
all changes are flushed after each session. Obviously, dem-
onstrators do require stateful access.

Figure 4 visualizes how SHARE supports the creation of
new demonstration images from existing ones. The following
steps are based on a realistic scenario from the graph-based
tools contest that was mentioned above and they correspond

123

www.manaraa.com

Supporting the internet-based evaluation of research software 17

Fig. 3 Typical walkthrough
for evaluators

to the numbers from Fig. 4. It should be noted that the graph-
based tools contest involved several case studies, some of
which could be solved in advance (offline case studies) and
one of which had to be solved during the workshop (the
live contest) [52]. The workshop attracted two submissions
based on the GrGen tool: one submission to an offline case

study and one submission to the live contest. The authors of
the offline submission completed a SHARE demo before the
workshop. The following walk-through indicates how one
of the authors of the live contest submission could leverage
that for quickly completing a new demo dedicated to his own
article.

123

www.manaraa.com

18 P. Van Gorp, P. Grefen

2

4

5

1

Group Admin

Image Owner

3

Demonstrator Evaluator

Evaluator

Demonstrator

Evaluator

Evaluator

Requests that require your review:

• Mutable access to VDI XP_GB9_GrGen_live.vdi requested by testergb@pietervangorp.com . [APPROVE | DENY]

Fig. 4 Typical walkthrough for demonstrators

1. Figure 4, ➀ shows how this author first indicates the
image that he wishes to clone. If there would not yet be
a GrGen demo in SHARE, the author would start from a
rudimentary operating system image (e.g., XP_GB.vdi,
an image from the GraBaTs09 group that only con-
tained Windows XP). In fact, this is what the other
GrGen authors had done before the workshop. These
other authors added the “GrGen” suffix to the name of
their cloned image. To save time, the new author decides
to request a clone from this image (Fig. 4, ➀ shows how
XP_GB_GrGen.vdi is selected) and adds the suffix “live”
to indicate that the new image will relate to the live con-
test. This name will be visible later to other users who
are browsing the list of available demonstration images
in the GraBaTs09 group.

2. After the request for a new image has been submitted,
SHARE sends an automatic message to the owner of
the original image as well as to the administrator of the
group in which that image is contained. As indicated by
Fig. 4, ➁, such messages can be retrieved via multiple
communication channels.

3. The administrator and the image owner can either app-
rove or deny the requests for new images. Figure 4, ➂,
shows the related fragment from the user interface. In
our running example, the owner of the image as well as
the issuer of the request are members of the development
team of the GrGen tool. The administrator of the corre-
sponding SHARE group is organizing the tool contest.
Therefore, both parties approve the request for the new
image.

4. After these approvals, SHARE creates a clone of the orig-
inal virtual machine image. As indicated by Fig. 4, ➃,
this image is initially visible to the demonstrator only.

Using steps ➁ to ➄ from the workflow related to Fig. 3,
the demonstrator can connect to the image remotely and
install additional software and documentation at will.
The main difference to what has been discussed in the
context of Fig. 3 is that demonstrators have stateful
access to their image: changes are preserved across ses-
sions. In our running example, the author of the live con-
test submission simply replaces the input models of the
original demo by new ones.

5. Once the virtual machine contains the complete environ-
ment as intended by the demonstrator, this demonstrator
can publish the image to the other group members. In the
example given, the image then becomes visible to all the
members of the GraBaTs09 group. All uses of the virtual
machine image will be stateless from this moment on,
including sessions initiated by the demonstrator himself.
This ensures that users can refer in a dependable manner
to a SHARE demonstration. In fact, all SHARE demon-
strations can be compared to library artifacts that can be
referenced from research articles and other documents.

The scenario described above does not discuss the possibil-
ity to deny requests for new demonstration images. If either
the owner of an image or the organizer of the group denies
such request, the issuer of the request will be notified auto-
matically. The scenario also does not elaborate as to what
happens when a demonstrator starts creating an image and
later decides he does not want to publish it to the group. In
that case, SHARE enables such demonstrators to discard the
stateful image. Finally, the scenario does not indicate explic-
itly how updates to demo images are supported. In fact, in
order to make such images true library artifacts, SHARE
intentionally only supports such updates through the crea-
tion of new clones, via the workflow described above.

3.3 Organizer walk-through

The aim of this article is to activate other event (workshop,
conference, . . .) organizers to administer their own SHARE
groups. The other sections of this article should have con-
vinced such organizers that it is desirable to have electronic
demonstrations available to the reviewers and target audience
of an event. In turn, this section should convince organizers
that the administrative overhead is manageable.

An organizer is responsible for the following tasks: (1)
managing group access, (2) managing clone requests, and (3)
advertising the images in the group. As indicated in Sect. 3,
new users can sign up online. Sign-up requests need to be
approved by the organizer. In order to protect such organiz-
ers from fake (spam) form submissions, SHARE only for-
wards requests from verified e-mail addresses. In practice,
an organizer then checks whether the e-mail address relates
to an academic individual and clicks a generated hyperlink

123

www.manaraa.com

Supporting the internet-based evaluation of research software 19

to either approve or deny the sign-up request. Additionally,
SHARE provides organizers a tabular user interface to revoke
group access later in time.

As indicated in the previous section, the second orga-
nizational task (i.e., managing clone requests) is supported
by automatic e-mails with direct hyperlinks for approval or
denial. Finally, the system facilitates the advertisement of the
images in a group by providing the organizers with automat-
ically generated HTML code for inclusion in call-for-paper
announcements.

As a concrete example scenario, consider the following
steps that “John”, the organizer of the hypothetical work-
shop “OOPSLA101”, should follow as a new SHARE group
organizer:

1. John signs up to the group “Operating Systems”[48],
using his e-mail address john.doe@uni.ac.eu and a pass-
word of his choice.

2. John receives an automatic e-mail from SHARE and
clicks a hyperlink to verify his john.doe@uni.ac.eu
address.

3. The organizer of the “Operating Systems” group rece-
ives an e-mail describing John’s request and approves
it by clicking a hyperlink.

4. John receives an e-mail announcing the approval of his
request.

5. John clicks a hyperlink from that e-mail, enters his pass-
word and logs into SHARE.

6. John can now evaluate the operating systems that are
available in SHARE by default, following the steps
described in Sect. 3.1 or following the online docu-
mentation[50]. Since John’s workshop is unrelated to
existing groups, John does not investigate which soft-
ware is already installed in images from other groups.
In fact, John decides that in the context of the OOP-
SLA101 workshop, all participants should be able to
install their software on machines running the Ubuntu
8 variant of Linux or the XP variant of Windows.

7. John uses the SHARE website to contact the SHARE
support staff. He indicates that he wants to become orga-
nizer of a new group, called OOPSLA101 and would
like to initialize that group with an Ubuntu and an XP
image.

8. A “group administrator” creates that new group via the
web interface: in summary, the two base images are
cloned, the clones are deployed to at least one virtual
machine server, and finally registered to the new group.
Afterwards, John is notified by e-mail.

9. John finalizes the call-for-papers of his workshop by
stating that for software-based contributions, a demo
should be made available in group OOPSLA101.

10. Before the submission deadline, John will receive vari-
ous registration requests for his SHARE group. After the

deadline, he indicates to the reviewers that software
attachments can be inspected in the group OOPSLA101.

The approval of clone requests has been discussed in the
previous section already. The final responsibility of John is
the advertisement of the images in the group OOPSLA101.
On the one hand, John is already supported by the SHARE
website, since that lists all available images for all public
groups. On the other hand, John can invite the participants to
his workshop to use the HTML and LATEX code that SHARE
generates for their demonstration images. Such code lists the
metadata of each image (name and owner) and a hyperlink
for directly initiating a session for a particular image.

Figure 5 displays a screenshot of a session from a user
that owns three images (one from the GraBaTs08 group and
two from the GraBaTs09 group). The first banner holds a
direct link for starting a virtual machine based on the image
under consideration. The second banner launches a popup to
post such a link to a social networking site. The third ban-
ner integrates with a website for collaborative bookmarking
and tagging [23]. The LATEX/BibTEX code facilitates one to
reference the demo image from a research article. With such
features, we want to assist academics as much as possible in
advertising their reproducible research.

3.4 Administrative features

SHARE defines two types of super users: (1) host adminis-
trators and (2) group administrators.

The first type of users is responsible for monitoring hard-
ware (virtual machine server) resources and for managing
internet access. SHARE is designed to make full internet
access unnecessary in most cases. However, in order to min-
imize the overhead when it does become necessary (e.g.,
to perform an online operating system update), the sys-
tem provides an automatic messaging system and a tabular
interface for managing internet access on virtual machine
servers. In some cases, it turns out that a particular virtual
machine server is (or may become) a bottleneck. In such
cases, a SHARE host administrator can easily replicate vir-
tual machine images to additional virtual machine servers.
More specifically, SHARE generates the supportive migra-
tion scripts automatically.

The second type of super users should facilitate the orga-
nizational scalability of the system: a group administrator
can create new virtual machine groups and assign organizers
to groups.

4 Implementation: how?

This section puts the example walk-throughs from the pre-
vious section in a broader perspective. By describing several

123

www.manaraa.com

20 P. Van Gorp, P. Grefen

Fig. 5 HTML and LATEX code

models of SHARE, users should better understand the design
rationale of the system, whereas others may use these models
to improve the system’s implementation.

4.1 Conceptual data model

Figure 6 displays a class diagram that models SHARE’s data
from a conceptual point of view: all classes in the diagram
correspond to persistent entities [3,22]. The diagram con-
tains several applications of stereotypes such as �K� and
�N N�. The former stereotype indicates that a particular
attribute can be used as a Key of its class whereas the latter
indicates that a particular attribute should Not have a Null
value.

The center of the diagram contains the User class. As
indicated by association “Registered for”, a user can be reg-
istered for multiple groups. The organizerApproved attribute
of association class “Registered for” ensures that users only
have access to a group’s images after approval from the orga-
nizer. A result from an early design decision is that an image
belongs to exactly one group (remark the UML composi-
tion between Group and Image). This decision was made to
limit the amount of administrative messages sent by SHARE.
More specifically, this design ensures that when negotiat-
ing access to an image (for registration or for cloning), the

administrator of only one group needs to be contacted for
approval. We do not claim this decision is optimal in all cases
but it turned out to be valid so far.

The most notable attribute from the Image (from “Virtual
Machine Image”) class is maxduration. This attribute enables
demonstrators to prohibit production-use of their research
demo. With regards to the minMemory attribute, the system
is configured to assign a fixed amount of main memory (i.e.,
1 gigabyte) to each virtual machine instance. Some images
however require more than that default.

With regards to the “VM usage” class, it may be worth
mentioning that the system dynamically allocates ports on
the virtual machine server. The serverPort attribute repre-
sents the number of the port that will be available at least for
the time frame that has been reserved via the start and du-
rationHours attributes. The allocation is based on instances
of the “Reachable port” class (displayed at the top right of
Fig. 6). These instances can be used to align SHARE with
some university-specific firewall settings.

The “VMU state” enumeration (displayed at the top left of
Fig. 6) is used to represent whether a machine can already (or
still) be accessed remotely, whether it still needs to be started
by the virtual machine server, or whether it has already been
terminated. The “Clone Of ” association is used to represent
which image is cloned from which other one. Recall that

123

www.manaraa.com

Supporting the internet-based evaluation of research software 21

Host

nDisconnectedPollsBeforeAbort : int

<<K>>dnsName : string
ipAddr : string
capacity : int

...

User

<<NN>>password : string

emailVerified : boolean
rangboomID : string

<<K>>email : string

Registered for

organizerApproved : boolean

Internet access

hostAdminApproved : boolean

Image

organizerApproved : boolean
ownerApproved : boolean

deployedToday : boolean
<<NN>>name : string

frozenAt : Moment

maxduration : int
minMemory : int

failNote : string

...

<<enumeration>>

Disk state

toBeCreated
mutable

deleted
delete

freeze
frozen

VM usage

nDisconnectedPolls : int

<<K>>name : string

durationHours : int

clientIP : string
serverPort : int
start : Moment

note : string

Group

<<K>>name : string

<<enumeration>>

VMU state

pending
history

active
failed

WindowsXP
Linux
...

<<enumeration>>

OS type

Reachable port

port : int

Bundle admin Host adminOrganizer

*

group

*

*

requestedBy

1*

1 *

owner

1

*
usedBy

1

Registered for
*

*

Clone Of

*
trg
1

src

*1
state

*1

state

*1

*

admin1

*

1user

1

*

*

1 host *

*

Fig. 6 Conceptual data model

for the protection of intellectual property and licenses, each
cloning operation needs to be approved by the owner of the
source image (see association end “owner”) and the organizer
of the corresponding SHARE group. After cloning, the user
who requested the clone (see association end “requested by”)
has exclusive and stateful access to the image. This user can
then install the new software that needs to be demonstrated.
Once complete, the user can “freeze” (see enumeration “Disk
state”) the image and make it visible to all other users of the
corresponding group.

4.2 Process simulation model

This section presents an executable model of the primary fea-
tures. The model is written in the high-level colored petri-net
formalism [24], using CPNtools [25]. The model serves the
following goals:

– the model enables one to step through some concrete sce-
narios in order to better understand the system behavior
under particular circumstances,

– the model can be used for simulation purposes. More spe-
cifically, the model consists of specific submodels (one
submodel for each double-bordered box in Fig. 7) and
contains timing information for each primitive event. This
enables one to estimate the average time required to per-
form a sequence of activities under particular environ-
ment conditions. For example, one can use the simulation
model to assess the effect of adding a new virtual machine
server on the waiting times for end-users,

– the model can serve as a blueprint for re-implementing
SHARE on top of a process execution engine.

Figure 7 shows the entry point of the hierarchical col-
ored petri-net. An oval is called a “place” in the petri-net
formalism whereas a box is called a “transition”. By mod-
eling convention, a black place represents a page where an
end-user can reside. Most transitions shown in Fig. 7 repre-
sent a click on a menu item (and most likely some follow-up
activities such as entering parameters). Transitions can also
encapsulate autonomous system behavior. Transition “start-
VM” for example models the behavior of a cron job on the
web server (as discussed in Sect. 2.2). The detailed timing
behavior is modeled on the next level of abstraction (in a
so-called subpage of the hierarchical net).

Again by modeling convention, gray places represent
persistent data. Notice that the associated data structure
is derived from the conceptual data model discussed in
Sect. 4.1. In another research project, we are develop-
ing model transformations for maintaining the consistency
between these models and the underlying database code.

Each place can contain so-called “tokens”. For black
places, tokens represents users that reside on the correspond-
ing webpages. The “green” rectangles show the token values
after the execution of more than 1000 events. The green rect-
angles indicate that at that point, there is still one user on the
system’s start page (token “Pieter” in place “View Startpage”
while two other users reside on the main page (tokens “Hans”
and “Rik” in place “Reside on Main Page”).

For gray places, tokens represent information in the sys-
tem database. The place “Auth DB” for example holds all

123

www.manaraa.com

22 P. Van Gorp, P. Grefen

Fig. 7 Simulation model

authentication information. The connected green rectangle
indicates that four users are known to the system: “Pieter”,
“Hans”, “Rik” and “Nena”. All accounts, except that of
“Pieter” are approved by a group organizer (which is why
“Pieter” was unable to login).

The place “Registration DB” holds a token that represents
the group registration information. Notice that this informa-
tion is generated randomly by the simulation engine, based
on statistical annotations in the simulation model. In the state
displayed in Fig. 7, all but three registration requests were
approved by the organizer of the corresponding group.

Finally, place “Session DB” holds a token that represents
the history of virtual machine sessions. In the state displayed
in Fig. 7, there are no active sessions. Instead, all sessions
have state “history”. By firing transition “Configure New Ses-
sion”, new sessions can be initiated dynamically. Obviously,
we are convinced that readers can better understand this exe-
cutable model by further exploring it using the right tool.
Therefore, users are invited to connect to a SHARE demo
that automatically starts the right modeling tool and loads
the simulation model for evaluation purposes [46].

4.3 Usage, stability and maintenance of the platform

At the time of writing, the primary SHARE installation runs
on three virtual machine servers. Each server has multiple
cores (2, 4 and 8, respectively) and an amount of main mem-
ory that is typical for entry-level university servers (4, 8 and
16 gigabytes, respectively). So far, the scarcest resource is
hard drive space and we are working with an academic part-
ner to address that [35].

The most powerful server is running at the University
of Antwerp (UA, Belgium) and this server has served the
SHARE cloud for more than 1 year at the time of writing.

The second-most powerful server is running at the Univer-
sity of Twente (UTwente, The Netherlands) and entered the
cloud just 1 month before the time of writing. This server
has replaced another SHARE machine at the same university
that has served the cloud for about 1 year. The least powerful
server is running at the Industrial Engineering department
of Eindhoven University of Technology (TU/e, The Nether-
lands) and is serving the cloud already for about a half-year.

Temporarily, the cloud has also been served by a cluster of
machines running at the Computer Science department of the
same university (TU/e). This was done to anticipate a heavy
load during the 2009 edition of the aforementioned graph-
based tools workshop. During that 2-day workshop, about
130 virtual machines were started but this high number is
partly due to users playing with the system (which involves
quickly starting and stopping virtual machines). Even dur-
ing that peak in actual system usage, neither CPU nor main
memory turned out to be a bottleneck. Instead, the hard drives
of individual cluster nodes were too small to hold all virtual
machine images that could be of interest to the workshop.
Therefore, the cluster nodes were configured with distinct
(yet overlapping) sets of images. After the workshop, the
cluster nodes were “returned” to their owner simply by con-
figuring them as “offline” in SHARE.

From the perspective of software robustness, the qual-
ity of the underlying hypervisor (VirtualBox) is sufficient.
Apart from a minor bug (see [47]) the software performed
remarkably well even for users on lower bandwidth wireless
networks. We have updated the VirtualBox executables on
the aforementioned servers at various times as part of the
general server maintenance routines. Just recently, the Vir-
tualBox command-line API has changed slightly. Therefore,
we had to update SHARE’s source code. Due to the design
that we described in Sect. 2.2, all changes could be localized

123

www.manaraa.com

Supporting the internet-based evaluation of research software 23

to the Bash scripting layer. That design even supports phased
upgrades: we upgrade the hypervisor on a testing machine
first and upgrade operational servers incrementally.

In summary, we have shown that the SHARE system can
effectively deal with highly varying usage loads. We have
also explained how the architecture easily supports hardware
scalability and controlled software upgrades. We invite other
research institutes to make available computational resources
as the popularity of the system increases. Moreover, we will
apply for SHARE-specific funding to sustain its deployment,
maintenance and further development.

5 Related work

In this section, we discuss related work from three perspec-
tives. The first set of related articles motivates reproducibility
from the viewpoint of science consumers as well as from an
author point of view. Secondly, the SHARE method is related
to existing methods in the reproducible research domain.
Finally, this section relates the SHARE platform to other
platforms in the cloud-computing domain.

5.1 Reproducible research: why?

Vandewalle et al. observe that although Descartes already
stressed the importance of reproducibility in 1637 [16],
fraudulent articles still slip the peer-reviewing process of
established journals in mature fields [53,58]. On a brighter
side, Vandewalle et al. also describe promising results from
a study on the correlation between research reproducibility
and research impact. The study is based on a survey on the
availability of the algorithm, code, and test data related to arti-
cles in IEEE Transactions on Image Processing in 2004. The
study is based on 134 articles and 90 reviewers. As an obvi-
ous observation, reproducibility does not guarantee citation
impact. More interestingly, the study confirms that articles
with a high citation impact have code and data online in most
cases. Similarly, Piwowar et al. [38] have examined the cita-
tion history of 85 biomedical publications. On the one hand,
that study is narrower since it only considers research data
(not code or configuration files). On the other hand, the con-
clusions can be generalized more easily: a linear regression
analysis points out that independently of journal impact fac-
tor, date of publication, and author country of origin, repro-
ducibility has a positive influence on citation impact.

5.2 Reproducible research: how?

Probably the most influential contribution to computational
research reproducibility was developed in the geophys-
ics domain, by the team of Claerbout between 1990 and
1995 [12]. The team already applied automatic build tools
to produce CD-ROM images that contained: (1) a research

article, (2) the TEX source of that article, (3) all Unix code
and data related to that article, (4) Unix scripts to rebuild
figures from the article automatically, perhaps after chang-
ing some parameter values or making some code changes,
and (5) a special purpose TEX viewer to trigger these scripts
while reading the research article.

Unfortunately, the CD-ROM images could not be used by
researchers using platforms other than Unix. This may have
inspired Donoho et al. to develop the WaveLab library [9,18].
Wavelab (and similar successors such as Madagascar [19]) is
an online repository of research code and data, organized by
research article. By using MATLAB as a computation plat-
form, the approach was no longer limited to one operating
system. Unfortunately, this operating system flexibility came
at the cost of the reader’s experience. More specifically, the
hyperlinks from article figures to supportive data and code
were again considered as future work:

One way to do this would be if journals were fully
electronic, and if we adopted hypermedia techniques.
. . . If one were interested in a figure, one would click
on it with a mouse, and a new window would instantly
appear, containing the code that the author of the article
used to create the figure. [9]

Today, there are no technical obstacles anymore for realizing
this vision. In the concrete example of WaveLab, one can
create a SHARE image with (1) MATLAB, (2) the WaveLab
module of a particular article, (3) a startup script that initial-
izes MATLAB with the code of a particular figure. By using
citations such as [46] (cfr., discussion of Fig. 5), authors can
enable readers to jump directly to the optimal environment.
Those that are concerned with hard disk limitations of their
virtual machine servers can adopt the practice of having one
SHARE demo per article and on the desktop of their virtual
machine one tool startup script per figure (or other obvious
candidate for reader verification). Without SHARE, authors
would face the concerns described by Vandewalle et al.:

Platform Standardization “Can we suppose that programs
such as MATLAB, Mathematica, or even Windows are
available, or should we constrain ourselves to the use of
open-source programs such as R, Octave, or SciLab in a
Linux environment?” [53]

Balancing Author and Reader Effort “There exists a large
variety of computer platforms, and making even some
simple code work on most platforms requires a lot of
work. We need to balance the ease of use for a reader
with the additional work to be done after development of
the algorithms and initial code. . . . ” [53]

Durability “In this tradeoff, it is also important to consider
the long-term availability of a platform. Due to changes in
data formats, compilers, and research platforms, research
is often only reproducible in a limited time window.” [53]

123

www.manaraa.com

24 P. Van Gorp, P. Grefen

Regarding standardization, we very much welcome the
development and use of interoperability standards in indus-
try. In fact, we are also working on a UML-based technique
to model transformation interoperability [51]. We also wel-
come the other approaches to model-based interoperabil-
ity, as presented in articles of this Special Issue. However,
from the organization of the transformation tool contest (see
Sect. 1.1) we conclude that also in the area of model-driven
development one should never constrain researchers to the
use of a particular file format or tool bus. Moreover, even
if a community adopts a standard platform (such as MAT-
LAB in the signal-processing domain [18]), we advocate that
demonstrations should be made available via a platform such
as SHARE, because (1) results should be reproducible with
minimal effort by readers from outside that community too,
and (2) because of the durability concern.

Regarding the effort concern, consider for example the
amount of work that authors need to perform for adopting
heavyweight integration approaches such as the Electronic
Tool Integration Platform (jETI [30,32,42]). The idea of
approaches such as jETI is that authors make their code call-
able remotely using web service technology. Other research-
ers can then treat that service as an online test oracle. Again,
in the context of the transformation tool contest, we have
invited all participants to investigate: (1) how to call the rel-
evant part of their tool with some standard inputs, (2) how
to get the transformed results (and some statistics), and (3)
how to pass that to a visualizer, which could be a service
itself [52]. Participants preferred a virtual machine-based
approach, because (1) that did not require them to extend
their tool and (2) the reader would get a realistic experience
of their tool’s mature user interface (instead of a web-based
interface that would be constructed in an ad-hoc manner).
SHARE is designed and maintained based on private feed-
back from this and other kinds of users. At the time of writing,
we have not yet performed a large scale evaluation survey.
However, we plan to do so, we will make available the results
and we will use these results to prioritize further research and
development.

Regarding durability, we support Claerbout’s observation
that every platform eventually becomes obsolete [20]. Since
SHARE relies on virtualization, it does not matter that a plat-
form on which a research demo is installed, becomes obso-
lete. A hypervisor will continue to run the self-contained
image on modern hardware while users will perceive the
complete environment in exactly the same way as when it was
first created. Librarians do not have to worry about the depen-
dencies of individual contributions anymore. They only need
to ensure that (1) all images are digitally preserved and that
(2) there is a version of the hypervisor that can boot the format
of the images and that runs on a physical machine. Notice
that SHARE administrators can use a standard format for
virtual machine images without losing generality. Focusing

on the conversion between virtual machine image formats,
or developing techniques to even run hypervisors virtually
is much more productive than focusing on domain-specific
data formats, or software migrations.

Notice that the “A” from the SHARE acronym (stand-
ing for “Autonomous”) represents a key characteristic related
to long-term reproducibility (durability): images should be
self-contained because the use of artifacts from outside the
SHARE cloud (e.g., artifacts from the public internet) may
lead to version inconsistencies. Therefore, even demos of
distributed software should (and usually can) be installed on
the localhost of one SHARE virtual machine. Technically,
we can extend the platform to also support virtual machines
that communicate with other virtual machines in the durable
cloud. At the time of writing, the virtual cluster functional-
ity is however not a priority. Whenever implementing such
advanced features, one should keep the workflows and user
interface simple enough for users who do not require/under-
stand the advanced functionality.

A special instance of distributed software that is quite
popular nowadays is software that relies on public web ser-
vices. Again, for long-term reproducibility, one should pro-
vide a stub for each of such services within the durable cloud.
Fortunately, this should not be an additional burden to the
researcher since the development of such stubs is increas-
ingly considered an integral part of development [11,60].
Nevertheless, SHARE does not provide a solution for those
service-oriented software contributions for which no offline
test stubs are available.

Apart from the technical aspects mentioned above, Stod-
den analyzes different license forms (for media as well
as software) with computational science reproducibility in
mind [43]. Stodden concludes that there is no license that fits
all purposes of different researchers. The article also indi-
cates that data cannot be copyrighted. On the other hand,
Stodden indicates that the effort of preparing metadata and
filtering data could legally be protected by means of an attri-
bution license. In our experience however, scientists usu-
ally do not have the resources to check whether their code
or data are used in accordance with license restrictions. In
fact, even choosing an optimal license may take more time
than the available window of opportunity for submitting the
related article. Perhaps this explains the very limited success
of research data repositories? For example, in the software-
modeling domain, the Atlantic ZOO is the largest reposi-
tory of public research data. The repository has already been
moved due to intellectual property issues with the Eclipse
initiative [7]. Moreover, it turns out that no companies agree
to make industrial models available for download there.
With SHARE, one can keep industrial models in safe con-
nection-less environments on virtual machine servers that
are administered directly by the companies that own the
models.

123

www.manaraa.com

Supporting the internet-based evaluation of research software 25

Table 2 Classification of work on reproducible research

Focus Bottleneck

Open source [36] Program code
availability

Author and reader effort

Platform durability

Scope: commercial contributions?

ETI, dETI, jETI
[30,32,42]

Online test oracle Author effort

Scope: no text/data integration

Wavelab,
Madagascar
[9,19,20]

Figure/table
reproducibility

Platform standardization

Platform durability

Scope: interactive software?

SHARE Holistic
reproducibility

Hypervisor durability

Legal durability

New license
types [43]

Legal durability Lack of precedents

Table 2 summarizes the discussion from this section in
a schematic manner. The table can be used to guide future
work on reproducible research. For example, in our ongoing
work we are anticipating the legal aspects related to SHARE.
As stated in Sect. 2.1 already, we are investigating how elec-
tronic contracts can formalize approvals from external parties
that own artifacts that are included in a demo image. At the
time of writing, each demonstrator takes responsibility for
the rights on all the material that he uploads to the SHARE
cloud. To ensure demo durability also from a legal perspec-
tive, one should involve vendors of operating systems (or
more specialized packages of commercial software) in the
workflows discussed in Sect. 3.2. The SHARE data model
(see Sect. 4.1) should then also support the representation of
approvals and all digital approvals should be non-repudiable.
Interestingly, SHARE group organizers can already restrict
image access to academic users (who can acquire evaluation
licenses for almost any commercial software package any-
how) and thereby anticipate most practical legal concerns.

5.3 Cloud computing: other platforms

Nimbus is a cloud-computing platform based on the XEN
hypervisor. It is aimed at exchanging and controlling vir-
tual machine images and associated metadata across the
internet. Keahey et al. use Nimbus to create virtual clusters
dynamically. As a running example, the authors dynamically
aggregate computational resources from three different uni-
versities to satisfy the service level agreements (SLAs) for
heavyweight biomedical computations [26]. Executing long-
running jobs according to SLAs is a typical scenario in
high-performance computing in general and in e-Science in
particular [15].

Nimbus and SHARE are similar in that both platforms deal
with the metadata of virtual machine images. Both projects
have a different background though: the Nimbus platform has
an e-Science background and has thus been designed for exe-
cuting computational jobs on a pool of long-running virtual
machines. Typically, multiple machines are started automati-
cally (behind the scenes) to support scientific workflows. The
user (a researcher) typically does not have direct access to
the underlying virtual machine sessions since these sessions
tend to be stateful and tend to serve other users too.

In contrast, the SHARE platform has a Reproducible
Research background and has thus been designed for (1)
direct, and properly isolated, access to short-running virtual
machine sessions that have been started explicitly by the user
and (2) for image sharing. As a result, Nimbus has a more
sophisticated API for monitoring runtime VM performance
(e.g., to check computational SLAs) whereas SHARE has a
more specialized user interface for image sharing (cloning
and advertising).

Eucalyptus [34] and the Grid Virtualization Engine
(GVE [57]) are open source cloud-computing platforms that
are similar to Nimbus but that emphasize the use of standard
web service technologies such as WSDL and BPEL more.
Amazon provides a commercial cloud computing platform,
called EC2 [2]. The EC2 virtual machines are called elastic,
since Amazon customers can dynamically change the amount
of physical server resources that are allocated to their running
virtual machines.

Interestingly, Eucalyptus machines can be controlled via
the EC2 management API too. Over time, it may become
worthwhile to investigate how SHARE images (in Virtu-
alBox or VMware format) could be deployed (1) to exter-
nal university servers running Eucalyptus, or (2) to Amazon
infrastructure. In the latter scenario, an end-user would enter
his Amazon credentials in SHARE and his Amazon com-
putational credits would then be used for running SHARE
demos. Table 3 summarizes the discussion from this section
in a schematic manner.

6 Conclusions

This article introduces a new approach to making software-
related research reproducible. SHARE, the supportive plat-
form, has emerged to solve concrete reproducibility problems
in the domain of model transformation. It turns out that about
15 years before, a conceptually similar approach was already
proposed by Claerbout et al., in the domain of geophysics.
SHARE solves several problems of such previous platforms
by applying recent virtualization and web technologies. The
system has been applied successfully by several workshops.

At the time of writing, some SHARE groups are already
administered by non-experts. In summary, authors create a

123

www.manaraa.com

26 P. Van Gorp, P. Grefen

Table 3 Classification of cloud
computing platforms Focus Limitation

Nimbus [26], Eucalyptus [34], GVE [34] High performance computing Sharing demo images

Amazon EC2 [2] Commercial elastic computing Sharing demo images

SHARE Sharing (evaluating/cloning) SLAs

new demo as follows: (1) they register for a particular group,
(2) they request a clone of a virtual machine image, (3) they
install additional software, data and documentation, and (4)
they publish their image to the group again. Apart from
step (3), authors spend less than a half-hour on SHARE.
Therefore, we advocate that the editors of journals and other
publication types should invite authors to adopt, or at least
evaluate, the proposed approach as soon as possible. This
should result in the emergence of publications that are much
easier to verify and that are durable, without asking unrea-
sonable effort or standardization from authors.

In our ongoing work, we are investigating how the legal
durability of SHARE demos can be guaranteed by means
of electronic contracts between demonstrators, organizers,
host administrators and commercial software vendors. Addi-
tionally, we are building a set of best practices for creat-
ing SHARE demos. This involves guidance on the use of
desktop organization software (such as Fences [41]), screen
capture software (such as Wink [27]) and other packages
that are complementary to SHARE. A possible extension of
SHARE may later support the storage and retrieval of screen
recordings (as well as more structured user logs) as feed-
back to demonstrators. Finally, we are monitoring the evolu-
tion of general purpose cloud-computing platforms (such as
Eucalyptus and EC2) and hope for the emergence of a stan-
dard format for virtual machine images as well as a standard
API for exchanging images and accounting resource usage to
end-users.

Acknowledgments The authors wish to thank Stefan Blom and Axel
Belinfante for their contributions to the SHARE source code. Addi-
tionally, we wish to thank Leon Osinski for organizing an excellent
workshop related to reproducible research [37]. Finally, we wish to
thank Marcel Hartgerink (from Wibu Systems) and Arnoud Engelfriet
(from ICTRecht) for fruitful discussions related to the technical and
legal aspects of software licenses.

Open Access This article is distributed under the terms of the Creative
Commons Attribution Noncommercial License which permits any
noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

References

1. Agrawal, A.: Graph rewriting and transformation (GReAT): a
solution for the model integrated computing (MIC) bottleneck.
ASE 0, 364 (2003)

2. Amazon.: Amazon Elastic Compute Cloud (Amazon EC2).
Amazon. http://aws.amazon.com/ec2/#pricing (2009)

3. Ambler, S.W.: A UML profile for data modeling. http://www.
agiledata.org/essays/umlDataModelingProfile.html (2009)

4. Angelov, S., Grefen, P.: The 4W framework for B2B e-contract-
ing. Int. J. Netw. Virtual Organ 2(1), 78–97 (2003)

5. Barrett, D.J., Silverman, R.E., Byrnes, R.G.: SSH: The Secure
Shell: The Definitive Guide, 2nd edn. O’Reilly and Associates
(2005)

6. Bézivin, J., Dupé, G., Jouault, F., Pitette, G., Rougui, J.E.: First
experiments with the ATL model transformation language: trans-
forming XSLT into XQuery. In: OOPSLA—Generative Tech-
niques in the Context of Model Driven Architecture. Anaheim,
California (2003)

7. Bézivin, J., Jouault, F., Brunelière, H., Garces, K., Combemale, B.,
Sottet, J.-S., Kleiner, M., Doux, G., Tisi, M.: Zoos. http://www.
emn.fr/z-info/atlanmod/index.php/Zoos. Accessed Mar 2010

8. Biermann, E., Ehrig, K., Köhler, C., Kuhns, G., Taentzer, G.,
Weiss, E.: Emf model refactoring based on graph transformation
concepts. ECEASST—Electronic Communications of the EASST,
vol. 3 (2006)

9. Buckheit, J., Donoho, D.L.: Wavelets and Statistics, vol. 103.
In: Wavelab and Reproducible Research, pp. 55–81. Springer-
Verlag, New York (1995)

10. Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J., Brandic, I.: Cloud
computing and emerging it platforms: vision, hype, and reality
for delivering computing as the 5th utility. Future Gener. Comput.
Syst. 25(6), 599–616 (2009)

11. Chen, J.-Y., Lin, C.-H.: Scenario-based service specification and
testing. J. Softw. Eng. Stud. 2, 69–80 (2007)

12. Claerbout, J.: Electronic documents give reproducible research
a new meaning. In: Proc. Ann. Int. Mtg Soc. Expl. Geophys.,
pp. 601–604 (1992)

13. Cuban, L.: Oversold and Underused: Computers in the Classroom.
Harvard University Press (2003)

14. Decker, G., Overdick, H., Weske, M.: Oryx—sharing conceptual
models on the web. In: ER’08: Proceedings of the 27th International
Conference on Conceptual Modeling, pp. 536–537. Springer-
Verlag, Berlin (2008)

15. Deelman, E., Gannon, D., Shields, M., Taylor, I.: Workflows and
e-science: an overview of workflow system features and capabili-
ties. Future Gener. Comput. Syst. 25(5), 528–540 (2009)

16. Descartes, R.: Discourse on Method. Jan Maire, Leiden
(1637/1991). Available in The Philosophical Writings of Descartes
(trans: Cottingham, J., Stoothoff, R., Murdoch, D., Kenny, A.).
Cambridge University Press

17. Dittner, R., Rule, D.: The Best Damn Server Virtualization Book
Period. Elsevier, Amsterdam (2007)

18. Donoho, D., Maleki, A., Rahman, I., Shahram, M., Stodden,
V.: Reproducible research in computational harmonic analysis.
Comput. Sci. Eng. 11(1), 8–18 (2009)

19. Fomel, S.: Madagascar—reproducible documents. http://www.
reproducibility.org/wiki/Reproducible_Documents. Accessed Mar
2010

20. Fomel, S., Claerbout, J.: Guest editors’ introduction: reproducible
research. Comput. Sci. Eng. 11(1), 5–7 (2009)

21. Geiger, L., Zündorf, A.: eDOBS—graphical debugging for eclipse.
In: 3rd International Workshop on Graph-Based Tools (GraBaTs)
ICGT Workshop, Natal, Brasil (Sept 2006)

123

http://aws.amazon.com/ec2/#pricing
http://www.agiledata.org/essays/umlDataModelingProfile.html
http://www.agiledata.org/essays/umlDataModelingProfile.html
http://www.emn.fr/z-info/atlanmod/index.php/Zoos
http://www.emn.fr/z-info/atlanmod/index.php/Zoos
http://www.reproducibility.org/wiki/Reproducible_Documents
http://www.reproducibility.org/wiki/Reproducible_Documents

www.manaraa.com

Supporting the internet-based evaluation of research software 27

22. Halpin, T., Bloesch, A.: Data modeling in UML and ORM: a com-
parison. J. Database Manag. 10(4), 4–13 (1999)

23. Hong, L., Chi, E.H., Budiu, R., Pirolli, P., Nelson, L.: Spartag.us: a
low cost tagging system for foraging of web content. In: AVI ’08:
Proceedings of the Working Conference on Advanced Visual Inter-
faces, pp. 65–72, New York, NY, USA. ACM (2008)

24. Jensen, K., Kristensen, L.: Coloured Petri Nets. Springer-
Verlag, Berlin (2009)

25. Jensen, K., Kristensen, L.M., Wells, L.: Coloured Petri Nets and
CPN Tools for modelling and validation of concurrent systems.
Int. J. Softw. Tools Technol. Transf. 9(3), 213–254 (2007)

26. Keahey, K., Tsugawa, M., Matsunaga, A., Fortes, J.: Sky comput-
ing. IEEE Internet Comput. 13(5), 43–51 (2009)

27. Kumar, S.: Wink. http://www.debugmode.com/wink/. Accessed
Mar 2010

28. Kurp, P.: Green computing. Commun. ACM 51(10), 11–13
(2008)

29. Lerdorf, R.J., Tatroe, K., Kaehms, B., McGredy, R.: Programming
PHP. O’Reilly and Associates (2002)

30. Margaria, T.: Web services-based tool-integration in the ETI plat-
form. Softw. Syst. Model. 4(2), 141–156 (2005)

31. Mylopoulos, J., Chung, L., Yu, E.: From object-oriented to goal-
oriented requirements analysis. Commun. ACM 42(1), 31–37
(1999)

32. Nagel, R.: How to setup a jETI service provider (jETI server).
http://jabc.cs.tu-dortmund.de/manual/index.php/JETI#Additional
_Documentation. Accessed June 2006

33. Newham, C., Rosenblatt, B.: Learning the Bash Shell, 2nd edn.
O’Reilly and Associates (1998)

34. Nurmi, D., Wolski, R., Grzegorczyk, C., Obertelli, G., Soman, S.,
Youseff, L., Zagorodnov, D.: The eucalyptus open-source cloud-
computing system. In: Proceedings of 9th IEEE International Sym-
posium on Cluster Computing and the Grid (2009)

35. D.U. of Technology, E. U. of Technology, and U. of Twente.: 3TU.
Data Centre. http://datacentrum.3tu.nl/. Accessed Mar 2010

36. Open Source Initiative.: Open source licenses by category. http://
www.opensource.org/licenses/category. Accessed Mar 2010

37. Osinski, L.: Research data! Who cares? http://w3.tue.nl/nl/
diensten/bib/over/minisymposium/. Accessed Sept 2009

38. Piwowar, H.A., Day, R.S., Fridsma, D.B.: Sharing detailed
research data is associated with increased citation rate. PLoS
ONE 2(3), e308+ (2007)

39. Rensink, A., Taentzer, G.: AGTiVE 2007 graph transformation tool
contest. In: Schürr, et al. (eds.) Lecture Notes in Computer Science,
vol. 5088. Springer, New York (2008)

40. Schürr, A., Nagl, M., Zündorf, A. (eds.): Applications of Graph
Transformations with Industrial Relevance, Third International
Symposium, AGTiVE 2007, Revised Selected and Invited Papers.
Lecture Notes in Computer Science, vol. 5088. Springer, New York
(2008)

41. Stardock Corporation. Fences. http://en.wikipedia.org/wiki/Fences
_(software). Accessed Mar 2010

42. Steffen, B., Margaria, T., Nagel, R., Jörges, S., Kubczak, C.: Model-
driven development with the jABC. In: Bin, E., Ziv, A., Ur, S. (eds.)
Haifa Verification Conference. Lecture Notes in Computer Science,
vol. 4383, pp. 92–108. Springer, New York (2006)

43. Stodden, V.: The legal framework for reproducible scientific
research: licensing and copyright. Comput. Sci. Eng. 11(1), 35–40
(2009)

44. R. D. S. T. S. Team: Top 10 RDP Protocol Misconceptions—part 2.
http://blogs.msdn.com/rds/archive/2009/03/12/top-10-rdp-
protocol-misconceptions-part-2.aspx. Accessed Mar 2009

45. van den Brand, M.: Guest editor’s introduction: experimental soft-
ware and toolkits (EST). Sci. Comput. Program. 69(1–3):1–2.
Special issue on Exp. Softw. Toolkits (2007)

46. Van Gorp, P.: SHARE image with CPNtools and behavioral
models of SHARE. http://is.ieis.tue.nl/staff/pvgorp/share/?page=
ConfigureNewSession&vdi=ModelsOfSHARE_v1.vdi. Accessed
Feb 2009

47. Van Gorp, P.: VRDP connection count bug? (wrong value of
mcVRDPC lients). http://www.virtualbox.org/ticket/4655. Acce-
ssed July 2009

48. Van Gorp, P.: SHARE group with basic operating system images
http://is.ieis.tue.nl/staff/pvgorp/share/?page=Signup&bundlename
=Operating%20Systems. Accessed Mar 2010

49. Van Gorp, P., Blom, S., Belinfante, A.: SHARE–Sharing Hosted
Autonomous Research Environments. http://is.ieis.tue.nl/staff/
pvgorp/share/ (2009)

50. Van Gorp, P., Blom, S., Belinfante, A.: SHARE documenta-
tion. http://fmt.cs.utwente.nl/redmine/wiki/5/SHARE. Accessed
Mar 2010

51. Van Gorp, P., Keller, A., Janssens, D. : Transformation lan-
guage integration based on profiles and higher order transforma-
tions. In: Gasevic, D., Lämmel, R., Wyk, E.V. (eds.) SLE. Lecture
Notes in Computer Science, vol. 5452, pp. 208–226. Springer-
Verlag, New York (2008)

52. Van Gorp, P., Rensink, A.: Call for papers: STTT special section
on Graph-Based tool comparison. http://www.fots.ua.ac.be/events/
grabats2008/sttt-section-cfp.pdf. Accessed Nov 2008

53. Vandewalle, P., Kovacevic, J., Vetterli, M.: Reproducible research
in signal processing—what, why, and how. IEEE Signal Process.
Mag. 26(3), 37–47 (2009)

54. Vaquero, L.M., Rodero-Merino, L., Caceres, J., Lindner, M.: A
break in the clouds: towards a cloud definition. SIGCOMM Com-
put. Commun. Rev. 39(1), 50–55 (2009)

55. Varro, D., Asztalos, M., Bisztray, D., Boronat, A., Geiss, R.,
Gogolla, M., Gorp, P.V., Kniemeyer, O., Narayanan, A., Rencis,
E., Weinell, E.: Graph transformation tools contest on the trans-
formation of UML models to CSP. In: Schürr, et al. (eds.) Lecture
Notes in Computer Science, vol. 5088. Springer, New York (2008)

56. VMware. VMware ESXi. http://www.vmware.com/. Accessed
Mar 2010

57. Wang, L., von Laszewski, G., Tao, J., Kunze, M.: Grid virtu-
alization engine: design, implementation and evaluation. IEEE
Syst. J. 3(4), 477–488 (2009)

58. Wikipedia. Hwang woo-suk-wikipedia, the free encyclopedia.
http://en.wikipedia.org/wiki/Hwang_Woo-Suk (2006)

59. Winter, R., Fischer, R.: Essential layers, artifacts, and dependen-
cies of enterprise architecture. In: EDOCW ’06: Proceedings of the
10th IEEE on International Enterprise Distributed Object Comput-
ing Conference Workshops, p. 30, Washington, DC, USA. IEEE
Computer Society (2006)

60. Zhu, H.: A framework for service-oriented testing of web services.
Comput. Softw. Appl. Conf. Annu. Int. 2, 145–150 (2006)

123

http://www.debugmode.com/wink/
http://jabc.cs.tu-dortmund.de/manual/index.php/JETI#Additional_Documentation
http://jabc.cs.tu-dortmund.de/manual/index.php/JETI#Additional_Documentation
http://datacentrum.3tu.nl/
http://www.opensource.org/licenses/category
http://www.opensource.org/licenses/category
http://w3.tue.nl/nl/diensten/bib/over/minisymposium/
http://w3.tue.nl/nl/diensten/bib/over/minisymposium/
http://en.wikipedia.org/wiki/Fences_(software)
http://en.wikipedia.org/wiki/Fences_(software)
http://blogs.msdn.com/rds/archive/2009/03/12/top-10-rdp-protocol-misconceptions-part-2.aspx
http://blogs.msdn.com/rds/archive/2009/03/12/top-10-rdp-protocol-misconceptions-part-2.aspx
http://is.ieis.tue.nl/staff/pvgorp/share/?page=ConfigureNewSession&vdi=ModelsOfSHARE_v1.vdi
http://is.ieis.tue.nl/staff/pvgorp/share/?page=ConfigureNewSession&vdi=ModelsOfSHARE_v1.vdi
http://www.virtualbox.org/ticket/4655
http://is.ieis.tue.nl/staff/pvgorp/share/?page=Signup&bundlename=Operating%20Systems
http://is.ieis.tue.nl/staff/pvgorp/share/?page=Signup&bundlename=Operating%20Systems
http://is.ieis.tue.nl/staff/pvgorp/share/
http://is.ieis.tue.nl/staff/pvgorp/share/
http://fmt.cs.utwente.nl/redmine/wiki/5/SHARE
http://www.fots.ua.ac.be/events/grabats2008/sttt-section-cfp.pdf
http://www.fots.ua.ac.be/events/grabats2008/sttt-section-cfp.pdf
http://www.vmware.com/
http://en.wikipedia.org/wiki/Hwang_Woo-Suk

www.manaraa.com

28 P. Van Gorp, P. Grefen

Author Biographies

Pieter Van Gorp is investigat-
ing the applicability of graph
transformation to standard com-
pliant model-driven engineering
since 2002. His research inter-
ests include model transforma-
tion, business process modeling
and reproducible research. To
support this research, he has con-
tributed to the MoTMoT tool and
more recently to SHARE. He
also teaches courses on model-
ing, transformation and simula-
tion, supported by tools such as
AToM3, GrGen.NET and CPN-

tools. Van Gorp has participated in the organization of national and
international workshops such as OCL 2008, various editions of the
Transformation Tools Contest (GraBaTs and TTC), and MHPW 2010.
He is a reviewer for various international conferences and journals.
Since 2008, Van Gorp is an assistant professor in the School of Indus-
trial Engineering at Eindhoven University of Technology. Previously
he held a postdoc position at the University of Antwerp, where he also
obtained his Ph.D. degree.

Paul Grefen is a full profes-
sor in the School of Indus-
trial Engineering at Eindhoven
University of Technology since
2003, where he chairs the Infor-
mation Systems subdepartment.
He received his Ph.D. in 1992
from the University of Twente.
From 1992 until early 2003, he
held assistant and associate pro-
fessor positions in the Com-
puter Science Department at the
University of Twente. He was
a visiting researcher at Stanford
University in 1994. He has been

involved in various European research projects as well as various pro-
jects within the Netherlands. He is a member of the editorial boards
of the International Journal of Cooperative Information Systems and
the International Journal of Service Oriented Computing and Applica-
tions. He is editor of the books on the WIDE and CrossWork projects,
and has published books on workflow management and e-business. He
is a member of the Executive Board of the European Supply Chain
Forum. His current research interests include inter-organizational work-
flow management, architectural design of business information sys-
tems, and high-level transaction and contract management in electronic
business.

123

www.manaraa.com

Copyright of Software & Systems Modeling is the property of Springer Science & Business Media B.V. and its

content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's

express written permission. However, users may print, download, or email articles for individual use.

